INTRODUCTION TO REAL GROUP REPRESENTATIONS

ZHIWEI YUN

Contents

1. Some structure theory 1
2. Notions of representations 3
3. Parabolic induction 6
4. GL_{2} and SL_{2} 7
References 9

1. Some structure theory

General reference: Knapp's lecture in 3].
1.1. The groups. Let \mathbb{G} be a connected reductive algebraic group over \mathbb{R}, and $G=\mathbb{G}(\mathbb{R})$. Starting with \mathbb{G} one can construct the following diagram

We first explain the groups. Here $\mathbb{G}_{\mathbb{C}}=\mathbb{G} \otimes_{\mathbb{R}} \mathbb{C}$. The \mathbb{R}-group $\mathbb{K} \subset \mathbb{G}$ is a (possibly disconnected) reductive subgroup such that $K=\mathbb{K}(\mathbb{R})$ is Zariski dense in \mathbb{K} and K is a maximal compact subgroup of G. We set $\mathbb{K}_{\mathbb{C}}=\mathbb{K} \otimes_{\mathbb{R}} \mathbb{C}$. Finally \mathbb{G}_{0} is the unique compact real form of $\mathbb{G}_{\mathbb{C}}$ containing \mathbb{K}. The lines in (1.1) are inclusions of real algebraic groups (viewing $\mathbb{G}_{\mathbb{C}}, \mathbb{K}_{\mathbb{C}}$ as real groups via Weil's restriction of scalars).
1.2. Example. Let $\mathbb{G}=\mathrm{GL}_{n}=\mathrm{GL}(V)$ for a n-dimensional \mathbb{R}-vector space V, the diagram (1.1) looks like

Here $q: V \rightarrow \mathbb{R}$ is a positive definite quadratic form; $V_{\mathbb{C}}=V \otimes_{\mathbb{R}} \mathbb{C} ; q_{\mathbb{C}}$ is the complexification of q; $h: V_{\mathbb{C}} \times V_{\mathbb{C}} \rightarrow \mathbb{C}$ is the unique Hermitian form extending q, i.e., $h(a v, a v)=|a|^{2} q(v)$ for all $v \in V_{\mathbb{R}}, a \in \mathbb{C}$.
1.3. Example. Let (V, q) be a nondegenerate quadratic space over \mathbb{R} and let $\mathbb{G}=\mathrm{SO}(V, q)$. Choose an orthogonal decomposition $V=V^{+} \oplus V^{-}$such that $q^{+}:=\left.q\right|_{V^{+}}\left(\right.$resp. $\left.q^{-}:=\left.q\right|_{V^{-}}\right)$is positive (resp. negative) definite. Then the diagram (1.1) looks like

1.4. Involutions. We then explain the involutions θ, σ and σ_{0}. The real form \mathbb{G} of $\mathbb{G}_{\mathbb{C}}$ corresponds to an involution $\sigma: \mathbb{G}_{\mathbb{C}} \rightarrow \mathbb{G}_{\mathbb{C}} \otimes_{\mathbb{C}, c} \mathbb{C}$ where c denotes complex conjugation (we call such an involution anti-holomorphic). We have $\mathbb{G}=\left(\operatorname{Res}_{\mathbb{R}} \mathbb{C}_{\mathbb{C}}\right)^{\sigma}$, where we view σ as an involution of $\operatorname{Res}_{\mathbb{R}} \mathbb{C}_{\mathbb{C}}$. Similarly, the compact real form \mathbb{G}_{0} corresponds to an anti-holomorphic involution σ_{0} of $\mathbb{G}_{\mathbb{C}}$. The involutions σ and σ_{0} commute with each other and $\theta=\sigma \sigma_{0}=\sigma_{0} \sigma \in \operatorname{Aut}_{\mathbb{C}}\left(\mathbb{G}_{\mathbb{C}}\right)$ is an involution of $\mathbb{G}_{\mathbb{C}}$ over \mathbb{C}. We have $\mathbb{K}_{\mathbb{C}}=\mathbb{G}_{\mathbb{C}}^{\theta}$. Moreover, $\mathbb{K}=\left(\operatorname{Res}_{\mathbb{R}}^{\mathbb{C}} \mathbb{G}_{\mathbb{C}}\right)^{\sigma_{0}, \sigma}$.
1.5. Theorem (Cartan). The $\mathbb{G}(\mathbb{C})$-conjugacy class of θ is uniquely determined by the real form \mathbb{G} of $\mathbb{G}_{\mathbb{C}}$. The correspondence $\mathbb{G} \mapsto \theta$ gives a bijection

$$
\left\{\text { real forms of } \mathbb{G}_{\mathbb{C}}\right\} / \text { isom } \leftrightarrow\left\{\text { involutions of } \mathbb{G}_{\mathbb{C}} \text { over } \mathbb{C}\right\} / \mathbb{G}_{\mathbb{C}}(\mathbb{C})
$$

Special cases: compact real form $\leftrightarrow \theta=1$; split real form \leftrightarrow Chevalley involutions.
1.6. Lie algebras. Let $\mathfrak{g}=$ Lie $\mathbb{G}_{\mathbb{C}}$. We have a decomposition of \mathfrak{g} into eigenspaces of θ

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}
$$

where $\mathfrak{k}=\mathfrak{g}^{\theta}$ and \mathfrak{p} is the (-1)-eigenspace of θ on \mathfrak{g}. Similarly, the real Lie algebra $\mathfrak{g}_{\mathbb{R}}=$ Lie \mathbb{G} has a decompostion $\mathfrak{g}_{\mathbb{R}}=\mathfrak{k}_{\mathbb{R}} \oplus \mathfrak{p}_{\mathbb{R}}$ into eigenspaces of $\left.\theta\right|_{\mathfrak{g}_{\mathbb{R}}}$. On the level of Lie algebras, diagram (1.1) becomes

Here c denotes the complex conjugation on \mathfrak{k} or \mathfrak{p} with respect to the real structure $\mathfrak{k}_{\mathbb{R}}$ or $\mathfrak{p}_{\mathbb{R}}$.
1.7. Polar decomposition. The map

$$
\begin{array}{rll}
K \times \mathfrak{p}_{\mathbb{R}} & \rightarrow G \\
(k, X) & \mapsto & k \exp (X)
\end{array}
$$

is a diffeomorphism. In particular the symmetric space G / K is diffeomorphic to the vector space $\mathfrak{p}_{\mathbb{R}}$.
1.8. Iwasawa decomposition. Let $\mathfrak{a}_{\mathbb{R}} \subset \mathfrak{p}_{\mathbb{R}}$ be a maximal subalgebra (automatically commutative). Then $A=\exp \left(\mathfrak{a}_{\mathbb{R}}\right)$ is a subgroup of G, and there is a unique split \mathbb{R}-torus $\mathbb{A} \subset \mathbb{G}$ such that $A=\mathbb{A}(\mathbb{R})^{\circ}$ (neutral component). Let $\mathbb{M}=C_{\mathbb{K}}(\mathbb{A}) \subset \mathbb{K}$ and let \mathbb{N} be a maximal unipotent subgroup of \mathbb{G} normalized by \mathbb{A}. Let $M=\mathbb{M}(\mathbb{R})$ and $N=\mathbb{N}(\mathbb{R})$. Then
(1) There is a unique minimal parabolic subgroup $\mathbb{P} \subset \mathbb{G}$ with Levi factor $\mathbb{L}=\mathbb{M} \mathbb{A}$ and unipotent radical \mathbb{N}. Multiplication gives a diffeomorphism $M \times A \times N \cong P=\mathbb{P}(\mathbb{R})$. The decomposition $P=M A N$ is called the Langlands decomposition for P. In particular, $A=\mathbb{A}(\mathbb{R})^{\circ}$ where \mathbb{A} is the split center of \mathbb{L} (i.e., the maximal \mathbb{R}-torus in the center of \mathbb{L}).
(2) Multiplication gives a diffeomorphism (Iwasawa decomposition)

$$
K \times A \times N \cong G
$$

1.9. Cartan decomposition. $G=K A K$.
1.10. Example. Polar decomposition for $\mathbb{G}=\mathrm{GL}_{n}$. Choose $K=O(q)$ with $q=\sum_{i} x_{i}^{2}$. Then $\mathfrak{p}_{\mathbb{R}}$ consists symmetric real matrices and $\exp \left(\mathfrak{p}_{\mathbb{R}}\right)$ consists of positive definite symmetric matrices. Every matrix A can be written uniquely as $A=O S$ where O is orthongal with respect to q and S is symmetric and positive definite. In fact, $A^{t} \cdot A$ is positive definite, hence admits a square root S which is again positive definite. Then let $O=A S^{-1}$.

Iwasawa decomposition for $\mathbb{G}=\mathrm{GL}_{n}$. Take A to be the group of diagonal matrices with positive entries and N upper triangular unipotent real matrices. Every matrix A can be written uniquely as $A=O D U$ with $O \in K, D \in A$ and $U \in N$. This follows from the Gram-Schmidt orthogonalization procedure for the positive definite matrix $A^{t} \cdot A$.
1.11. Example. Let us take a non-split example $\mathbb{G}=U(V, h)$ for a non-degenerate Hermitian form h on a complex vector space V of signature (p, q) and $p \leq q$. Choose an orthogonal decomposition $V=V^{+} \oplus V^{-}$ such that $\left.h\right|_{V_{\mathbb{C}}^{+}}>0,\left.h\right|_{V_{\mathrm{C}}^{-}}<0$. Then $K=\mathrm{U}\left(V^{+}, h\right) \times \mathrm{U}\left(V^{-}, h\right)$ is a maximal compact of G, and $\mathfrak{p}_{\mathbb{R}} \cong \operatorname{Hom}_{\mathbb{C}}\left(V^{+}, V^{-}\right)$(really should be thought of as a pair of maps $V^{+} \rightarrow V^{-}$and $V^{-} \rightarrow V^{+}$adjoint to each other).

Choose an orthonormal basis $e_{1}^{+}, \cdots, e_{p}^{+}$of V^{+}and an orthonormal (norms are -1) basis $e_{1}^{-}, \cdots, e_{q}^{-}$of V^{-}. Let $\mathfrak{a}_{\mathbb{R}} \subset \mathfrak{p}_{\mathbb{R}}$ consist of maps $V^{+} \rightarrow V^{-}$sending e_{j}^{+}to $\mathbb{R} e_{j}^{-}$. Then $\mathfrak{a}_{\mathbb{R}}$ is a maximal subalgebra of $\mathfrak{p}_{\mathbb{R}}$, and it corresponds to a maximally split torus in $\mathbb{G}=\mathrm{U}(V, h)$.

For each $j, f_{j}=e_{j}^{+}+e_{j}^{-}$is isotropic. Let $F_{j}=\operatorname{Span}_{\mathbb{C}}\left\{f_{1}, \cdots, f_{j}\right\}$ for $j=1, \cdots, p$. The parabolic \mathbb{P} adapted to $\mathfrak{a}_{\mathbb{R}}$ in this situation is the stabilizer of the flag

$$
\begin{equation*}
0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{p} \subset F_{p}^{\perp} \subset \cdots \subset F_{1}^{\perp} \subset V \tag{1.2}
\end{equation*}
$$

For a description of M, A and N, see Example 3.2

2. Notions of REpresentations

General reference: Baldoni's lecture in [3]. Partially follow [5].
2.1. Definition. (1) A representation of G is a complete locally convex topological ${ }^{1} \mathbb{C}$-vector space V with a continuous action $G \times V \rightarrow V$. We denote the homomorphism $G \rightarrow \mathrm{GL}(V)$ by π.
(2) A unitary representation of G is a Hilbert space V with a continuous unitary action of G.
(3) A representation (π, V) of G is called irreducible if it does not contain nonzero proper closed subspace $V^{\prime} \subset V$ stable under G.
2.2. Smooth vectors. A vector $v \in V$ is C^{1} if for any $X \in \mathfrak{g}_{\mathbb{R}}$ the derivative

$$
X \cdot v:=\lim _{t \rightarrow 0} \frac{\pi(\exp (t X)) v-v}{t}
$$

exists. Similarly we may define C^{k} vectors. A smooth vector $v \in V$ is one which is C^{k} for all $k \geq 1$. Let $V^{\infty} \subset V$ be the subspace of smooth vectors. This is stable under G.

2.3. Theorem (Garding). Let (π, V) be a representation of G. Then

(1) The subspace V^{∞} is dense in V;
(2) The subspace V^{∞} carries a natural action of \mathfrak{g} (hence $U(\mathfrak{g})$).

Sketch of proof of (1). For any smooth compactly supported measure ϕ on G and $v \in V$, the vector

$$
\pi(\phi) v=\int_{G} \phi(g) \pi(g) v
$$

belongs to V^{∞}. The space spanned by such $\pi(\phi) v$ is already dense in V.

[^0]For example, consider the right regular representation of G on $V=L^{2}(G)$. Then V^{∞} consists of smooth L^{2}-functions on G with all derivatives (of arbitrary order) still L^{2}.
2.4. K-finite vectors. Let V_{1} be a continuous K-module. A vector $v \in V_{1}$ is K-finite if $\pi(k) v(\forall k \in K)$ span a finite-dimensional subspace. Let $V_{1}^{(K)}$ denote the K-finite vectors in $V_{1} ; V_{1}$ is called locally finite (under the action of K) if $V_{1}^{(K)}=V_{1}$. Representation theory of the compact group K gives

$$
V_{1}^{(K)} \cong \bigoplus_{\mu \in \operatorname{Irr}(K)} E_{\mu} \otimes \operatorname{Hom}_{K}\left(E_{\mu}, V_{1}\right)
$$

Here E_{μ} is the finite-dimensional \mathbb{C}-vector space affording the irreducible representation μ of K. In particular, the action of K on $V_{1}^{(K)}$ is analytic, because the action of K on each E_{μ} is.

When V is a representation of $G, V^{(K)}$ is dense in V. Warning: $V^{(K)}$ is not stable under G ! (It depends on the choice of K).

2.5. Definition. A (\mathfrak{g}, K)-module is a \mathbb{C}-vector space V equipped with

- A representation of \mathfrak{g} on $V ;(\Leftrightarrow V$ is a $U(\mathfrak{g})$-module $)$
- A locally finite and continuous action of K (hence analytic);
subject to the conditions
(1) The differential of the K-action on V is equal to the \mathfrak{k}-action restricted from the \mathfrak{g}-action on V.
(2) For $k \in K, X \in \mathfrak{g}, v \in V$ we have

$$
k \cdot(X \cdot v)=(\operatorname{Ad}(k) X) \cdot(k \cdot v)
$$

Note that the second condition is only needed when K is disconnected. One can similarly define the notation of $\left(\mathfrak{g}, \mathbb{K}_{\mathbb{C}}\right)$-modules by requiring V to be a union of finite-dimensional algebraic representations of $\mathbb{K}_{\mathbb{C}}$. This notion is equivalent to the notion of (\mathfrak{g}, K)-modules. Therefore, (\mathfrak{g}, K)-module is a purely algebraic notion.

We have a functor

$$
\begin{aligned}
\{\text { representations of } G\} & \rightarrow(\mathfrak{g}, K)-\bmod \\
V & \mapsto V^{\infty,(K)}:=V^{\infty} \cap V^{(K)}
\end{aligned}
$$

The subspace $V^{\infty,(K)}$ is also dense in V. Two representations of G are called infinitesmially equivalent if they give the same (\mathfrak{g}, K)-module by the above functor.
2.6. Definition. A (\mathfrak{g}, K)-module V is called admissible if each irreducible representation of K appears in V with finite multiplicity. Likewise, a representation (π, V) of G is admissible if each irreducible representation of K appears in $V^{(K)}$ with finite multiplicity.
2.7. Theorem (Harish-Chandra). If (π, V) is an admissible representation of G, then there is a one-to-one bijection between closed G-invariant subspaces of V and sub- (\mathfrak{g}, K)-modules of $V^{\infty,(K)}$. In particular, an admissible representation (π, V) is irreducible if and only the (\mathfrak{g}, K)-module $V^{\infty,(K)}$ is irreducible.

Key ingredient: If (π, V) is admissible, then $V^{(K)} \subset V^{\infty}$ (even contained in analytic vectors). Proof uses regularity of elliptic operators.

2.8. Corollary. Schur's lemma holds for admissible representations of G.

Proof. Let (π, V) be an irreducible admissible representation of G. Let $\operatorname{End}_{G}(V)$ be the continuous G endomorphisms of V. The map $\operatorname{End}_{G}(V) \rightarrow \operatorname{End}_{(\mathfrak{g}, K)}\left(V^{(K)}\right)$ is injective since $V^{(K)}$ is dense in V. However, since $V^{(K)}$ is irreducible as a (\mathfrak{g}, K)-module by Theoerem 2.7. $\operatorname{End}_{(\mathfrak{g}, K)}\left(V^{(K)}\right)$ is a division algebra over \mathbb{C}. Moreover, admissibility of $V^{(K)}$ implies that $\operatorname{End}_{(\mathfrak{g}, K)}\left(V^{(K)}\right)$ has countable dimension. Therefore $\operatorname{End}_{(\mathfrak{g}, K)}\left(V^{(K)}\right)=\mathbb{C}$ (same as Jacquet's argument for p-adic groups).

Discrete series will be elaborated in the next lecture by Akshay. We only give definition here.
2.9. Definition-Lemma (Godement). The following are equivalent for a unitary representation (π, V) of G
(1) (π, V) unitarily embeds into the left regular representation of G on $L^{2}(G)$;
(2) Every matrix coefficient of V is square-integrable;
(3) There exists a nonzero matrix coefficient of V which is square-integrable.

If (π, V) satisfies the above conditions, it is called a discrete series representation of G.
2.10. Infinitesimal characters. Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}. Let $\mathfrak{Z}(\mathfrak{g})$ denote the center of $U(\mathfrak{g})$. To get a sense of how large $\mathfrak{Z}(\mathfrak{g})$ is, consider the filtration of $U(\mathfrak{g})$ by degree. Since $\mathfrak{Z}(\mathfrak{g})=U(\mathfrak{g})^{\mathbb{G}}, \operatorname{Gr} \mathfrak{Z}(\mathfrak{g}) \cong(\operatorname{Gr} U(\mathfrak{g}))^{\mathbb{G}}\left(\right.$ exactness of $\left.(-)^{\mathbb{G}}\right) \cong \operatorname{Sym}(\mathfrak{g})^{\mathbb{G}} \cong \operatorname{Sym}(\mathfrak{h})^{W}$ (last isom: Chevalley).
2.11. Definition (Harish-Chandra). A representation (π, V) of G is quasi-simple if the center $\mathfrak{Z}(\mathfrak{g})$ acts as a scalar on V^{∞}.

Note: Irreducible unitary representations of G are quasi-simple.
Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} with Weyl group W. Note that the quotient $\mathfrak{h}^{*} / / W$ is independent of the choice of \mathfrak{h} : it is identified with $\mathfrak{g}^{*} / / G$ by Chevalley's theorem.
2.12. Theorem (Harish-Chandra). There is a canonical isomorphism Spec $\mathfrak{Z}(\mathfrak{g}) \cong \mathfrak{h}^{*} / / W$. For an irreducible \mathfrak{g}-module V_{λ} with highest weight (with respect to the choice of a Borel \mathfrak{b} containing \mathfrak{h}) $\lambda \in \mathfrak{h}^{*}$, $\mathfrak{Z}(\mathfrak{g})$ acts on V_{λ} via the $\xi \in \operatorname{Spec} \mathfrak{Z}(\mathfrak{g})$ which corresponds to the W-orbit of $\lambda+\rho$ (2ρ is the sum of roots appearing in \mathfrak{b}).
Sketch of proof. Choose a triangular decomposition $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$. We have $U(\mathfrak{g}) \cong U\left(\mathfrak{n}^{-}\right) \otimes \operatorname{Sym}(\mathfrak{h}) \otimes$ $U\left(\mathfrak{n}^{+}\right)$as vector spaces. Every $Z \in \mathfrak{Z}(\mathfrak{g})$ can be written as $Z=Z_{0}+Z_{+}$where $Z_{+} \in U(\mathfrak{g}) \mathfrak{n}^{+}$and $Z_{0} \subset U\left(\mathfrak{n}^{-}\right) \otimes \operatorname{Sym}(\mathfrak{h})$. The fact that Z commutes with \mathfrak{h} implies $Z_{0} \in \operatorname{Sym}(\mathfrak{h})$.

One checks that Z_{0} is invariant under the dot-action of W on \mathfrak{h}^{*}

$$
w \cdot \lambda=w(\lambda+\rho)-\rho, \forall w \in W, \lambda \in \mathfrak{h}^{*}
$$

The assignment $Z \mapsto Z_{0} \in \operatorname{Sym}(\mathfrak{h})^{(W, \cdot)}$ gives an algebra isomorphism $\mathfrak{Z}(\mathfrak{g}) \cong \operatorname{Sym}(\mathfrak{h})^{(W, \cdot)}$. Shifting by ρ gives an isomorphism $\mathfrak{h}^{*} / /(W, \cdot) \cong \mathfrak{h}^{*} / / W$.

For a quasi-simple representation (π, V), the action of $\mathfrak{Z}(\mathfrak{g})$ is via a character of $\xi \in \operatorname{Spec} \mathfrak{Z}(\mathfrak{g})$, which correspond to a W-orbit in \mathfrak{h}^{*} by the above theorem. The character ξ is called the infinitesimal character of (π, V).
2.13. Theorem (Harish-Chandra; Lepowsky). Every finitely-generated quasi-simple (\mathfrak{g}, K)-module is admissible. The multiplicity of $\lambda \in \operatorname{Irr}(K)$ in any irreducible (\mathfrak{g}, K)-module V is bounded by a constant which only depends on λ.

The proof of the Theorem involves a detailed study of the algebra $\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} R(K)\right)^{K}$ (Lepowsky). Here $R(K)=\oplus_{\mu \in \operatorname{Irr}(K)} \operatorname{End}\left(E_{\mu}\right)$ is the space of matrix coefficients of K. The key point is to show an algebra embedding

$$
\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} R(K)\right)^{K} \hookrightarrow \operatorname{Sym}(\mathfrak{a}) \otimes R(K)^{M, \mathrm{op}}
$$

and the target has a large center. The argument is similar to that of Theorem 2.12 .
Using this theorem, Theorem 2.7 can be extended to all quasi-simple G-representations.
2.14. Summary. We have

$$
\operatorname{Irr}(G)_{\text {disc }} \hookrightarrow \operatorname{Irr}(G)_{\text {unitary }} \hookrightarrow \operatorname{Irr}(G)_{\text {quasi-simple }} \rightarrow \operatorname{Irr}(\mathfrak{g}, K)
$$

All the above are admissible.
The composition $\operatorname{Irr}(G)_{\text {unitary }} \rightarrow \operatorname{Irr}(\mathfrak{g}, K)$ is injective, with image consisting of those irreducible (\mathfrak{g}, K)modules admitting a positive definite (\mathfrak{g}, K)-invariant Hermitian form. (Reason for injectivity: suppose V_{1} and V_{2} are unitary reps with $T: V_{1}^{(K)} \cong V_{2}^{(K)}$ as (\mathfrak{g}, K)-modules. First try to extend T to a K-equivariant isometry $\widetilde{T}: V_{1} \xrightarrow{\sim} V_{2}$. Then using the fact that the K-finite matrix coefficients are analytic functions on G, one checks that \widetilde{T} sends matrix coefficients of V_{1} to the corresponding matrix coefficients of V_{2} (enough to check $U(\mathfrak{g})$-action by analyticity). Therefore \widetilde{T} is also G-equivariant.)

3. Parabolic induction

3.1. Standard parabolics. Let $P=\mathbb{P}(\mathbb{R})=M A N$ be a minimal parabolic. A standard parabolic of G is the \mathbb{R}-points of a parabolic of \mathbb{G} containing \mathbb{P}. These are in bijection with subsets of $\Delta \subset \mathbb{X}^{*}(\mathbb{A})$ (simple roots of A with respect to N).

Let Q_{J} be a standard parabolic corresponding to $J \subset \Delta$, then it has a Langlands decomposition $Q_{J}=M_{J} A_{J} N_{J}$. Here $A_{J}=\cap_{\alpha \in J} \operatorname{ker}(\alpha) \subset A$, which is the neutral component of the \mathbb{R}-points of a subtorus $\mathbb{A}_{J} \subset \mathbb{A}$. Let $\mathbb{L}_{J}=C_{\mathbb{G}}\left(\mathbb{A}_{J}\right)$ be the Levi subgroup of \mathbb{Q}_{J} with \mathbb{R}-points L_{J}. There is unique subgroup $M_{J} \subset L_{J}$ with compact center which is complementary to A_{J} (M_{J} may not be connected). We also write the Langlands decomposition as $Q=M_{Q} A_{Q} N_{Q}$.
3.2. Example. Let $G=U(V, h)$ as in Example 1.11. Standard parabolic subgroups of G are stabilizers of a partial flag (a self-dual subset of 1.2):

$$
0 \subset F_{i_{1}} \subset \cdots \subset F_{i_{s}} \subset F_{i_{s}}^{\perp} \subset \cdots \subset F_{i_{1}}^{\perp} \subset V
$$

with $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq p$. For Q equal to the stabilizer of this partial flag, we have

$$
\begin{aligned}
L_{Q} & =\prod_{j=1}^{s} \mathrm{GL}_{\mathbb{C}}\left(F_{i_{j}} / F_{i_{j-1}}\right) \times U\left(F_{i_{s}}^{\perp} / F_{i_{s}}, \bar{h}\right) \\
A_{Q} & =\prod_{j=1}^{s} \mathbb{R}_{>0} \cdot \operatorname{id} \times\{1\} \\
M_{Q} & =\operatorname{ker}\left(L_{Q} \xrightarrow{|\operatorname{det}|} \prod_{j=1}^{s} \mathbb{R}_{>0}\right) \\
N_{Q} & =\operatorname{ker}\left(Q \rightarrow L_{Q}\right)
\end{aligned}
$$

3.3. Induction. Let $Q=M_{Q} A_{Q} N_{Q} \subset G$ be a standard parabolic. Let $\left(\sigma, V_{\sigma}\right)$ be a representation of M_{Q} and $\lambda \in \mathfrak{a}_{Q}^{*}\left(\right.$ where $\left.\mathfrak{a}_{Q}=\left(\text { Lie } A_{Q}\right)_{\mathbb{C}}\right)$. Let $2 \rho_{Q}$ be the weight of the action of \mathbb{A}_{Q} on \mathbb{N}_{Q}. Then the induced representation $\operatorname{Ind}_{Q}^{G}(\sigma, \lambda):=\operatorname{Ind}_{Q}^{G}\left(\sigma \otimes\left(\lambda+\rho_{Q}\right) \otimes 1\right)$ is the completion of the space of continuous functions $f: G \rightarrow V_{\sigma}$ such that

$$
f(g m a n)=e^{-\left\langle\lambda+\rho_{Q}, \log (a)\right\rangle} \sigma(m)^{-1} f(g)
$$

(with G acting by left translation). Alternatively, this can be viewed as a space of sections of a homogeneous bundle over G / Q with fibers V_{σ}.
3.4. Special case: induction from a minimal parabolic. When $Q=P$ is minimal, M is compact. In this case we take a finite-dimensional irreducible representation $\sigma \in \operatorname{Irr}(M)$.

Since $G=K A N$, we may alternative describe $\operatorname{Ind}_{P}^{G}(\sigma, \lambda)$ as (completion of) the space of functions $f: K \rightarrow V_{\sigma}$ satisfying $f(k m)=\sigma\left(m^{-1}\right) f(k)$. Hence, as K-module we have

$$
\left(\operatorname{Res}_{K}^{G} \operatorname{Ind}_{P}^{G}(\sigma, \lambda)\right)^{(K)} \cong\left(\operatorname{Ind}_{M}^{K} V_{\sigma}\right)^{(K)}
$$

In particular, the multiplicity of $\mu \in \operatorname{Irr}(K)$ in $\left.\operatorname{Ind}_{P}^{G}(\sigma, \lambda)\right)$ is

$$
\begin{equation*}
\left.\operatorname{Hom}_{K}\left(E_{\mu}, \operatorname{Ind}_{P}^{G}(\sigma, \lambda)\right)\right)=\operatorname{Hom}_{K}\left(E_{\mu}, \operatorname{Ind}_{M}^{K} V_{\sigma}\right)=\operatorname{Hom}_{M}\left(\operatorname{Res}_{M}^{K} E_{\mu}, V_{\sigma}\right) \tag{3.1}
\end{equation*}
$$

3.5. Theorem (Casselman's submodule theorem). Any irreducible (\mathfrak{g}, K)-module appears as a sub-(\mathfrak{g}, K)module of some induced representation $\operatorname{Ind}_{P}^{G}(\sigma, \lambda)$ for some $\sigma \in \operatorname{Irr}(M)$ and $\lambda \in \mathfrak{a}^{*}$.
Outline of proof. By Frobenius reciprocity, it suffices to show that $V_{\mathfrak{n}}:=V / \mathfrak{n} V \neq 0$, where $\mathfrak{n}=(\text { Lie } \mathbb{N})_{\mathbb{C}} \subset$ \mathfrak{g}. There are two proofs of this fact.

Casselman's original proof uses estimates of matrix coefficents. For $v \in V^{(K)}$ and $v^{*} \in\left(V^{*}\right)^{(K)}$, the matrix coefficient $a \mapsto\left\langle v^{*}, \pi(a) v\right\rangle\left(a \in A^{+}\right.$, dominant part of $\left.A\right)$ can be expanded as ansolutely convergent series $\sum_{\lambda, \mu} c_{\lambda, \mu}\left(v^{*}, v\right) a^{\lambda}(\log a)^{\mu}$ for a discrete bounded above subset $\lambda \in \mathfrak{a}^{*}$ and μ in the positive root semigroup. Fix v^{*}, take a maximal λ (under the order induced from simple roots Δ^{+}) such that $f_{\lambda}(v, a)=\sum_{\mu} c_{\lambda, \mu} a^{\lambda}(\log a)^{\mu} \neq 0$, then f_{λ} gives a nonzero map $V_{\mathfrak{n}} \rightarrow C^{\infty}\left(A^{+}\right)$; in particular $V_{\mathfrak{n}} \neq 0$.

Beilinson and Bernstein [1] gave an algebraic proof of the fact $V_{\mathfrak{n}} \neq 0$. They reduce to showing that for any finitely generated $U(\mathfrak{g})$-module $V, V_{\mathfrak{n}^{\prime}} \neq 0$ for a Zariski dense choice of \mathfrak{n}^{\prime} (parametrized by the flag variety X of $\mathbb{G}_{\mathbb{C}}$). Then when V is a (\mathfrak{g}, K)-module, the action of $\mathbb{K}_{\mathbb{C}}$ on X allows one to conclude that $V_{\mathfrak{n}} \neq 0$ because \mathfrak{n} lies in the open $\mathbb{K}(\mathbb{C})$-orbit of X. The strategy for showing $V_{\mathfrak{n}^{\prime}} \neq 0$ is by relating V to (twisted) D-modules over X. Suppose the infinitesimal character ξ corresponds to the W-orbit of $\lambda+\rho \in \mathfrak{h}^{*}$ under Theorem 2.12, there is a localization functor

$$
\Delta_{\lambda}: U(\mathfrak{g})_{\xi}-\bmod \rightarrow D_{\lambda}-\bmod (X)
$$

When χ is regular and dominant, this is an equivalence of categories. The stalk of $\Delta_{\lambda}(V)$ at $\mathfrak{n}^{\prime} \in X$ is $V_{\mathfrak{n}^{\prime}}(\lambda)$ (weight space for \mathfrak{h}), and we reduce to show that the support of $\Delta_{\lambda}(V)$ is Zariski dense. The dominant $\lambda+\rho$ may not give this right away, and one uses intertwining operators to switch between different $\lambda+\rho$'s in the W-orbit, to eventually find one λ such that $\Delta_{\lambda}(V)$ has full support.

Combining this theorem with the calculation (3.1), we see that the multiplicity of $\mu \in \operatorname{Irr}(K)$ in any irreducible (\mathfrak{g}, K)-module is bounded by the maximum of the mutiplicities of irreducible representations of M appearing in $\operatorname{Res}_{M}^{K} E_{\mu}$. This is a number which only depends on μ and not on the (\mathfrak{g}, K)-module. This gives a proof of the second of part of Theorem 2.13 .

4. GL_{2} AND SL_{2}

4.1. The maximal compact. Let W be a two-dimensional vector space over \mathbb{R}. Let $\mathbb{G}=\mathrm{SL}(W)$ and $\mathbb{G}^{\prime}=\mathrm{GL}(W)$. Choose a volume form $\omega \in \wedge^{2}(W)$ and a positive definite quadratic form $q: W \rightarrow \mathbb{R}$. Let $\mathbb{K}=\mathrm{SO}(W, q)<\mathbb{G}$ and $\mathbb{K}^{\prime}=\mathrm{O}(V, q)<\mathbb{G}^{\prime}$. Note that (ω, q) uniquely determines a complex structure $J: W \rightarrow W$ such that $b_{q}(J x, y)=(x \wedge y) / \omega\left(b_{q}\right.$ is the symmetric bilinear form associated with $\left.q\right)$, so that W becomes a 1-dimensional \mathbb{C}-vector space. Elements in $\mathbb{K}=\operatorname{SO}(W, q)$ preserve both q and ω, hence commutes with J. This gives a canonical embedding $\iota: \mathbb{K} \hookrightarrow \operatorname{Res}_{\mathbb{R}} \mathbb{C}^{\mathbb{G}}{ }_{m}=\operatorname{Aut}_{J}(W)$ and identifies K with the unit circle in \mathbb{C}^{\times}.
4.2. Center of $U(\mathfrak{g})$. Let $z=\operatorname{diag}(1,1) \in \mathfrak{g}^{\prime}=\mathfrak{g l}\left(W_{\mathbb{C}}\right)$. Since $K=\operatorname{SO}(W, q)$ is a maximal torus in G, we may choose a basis $\{e, h, f\}$ for $\mathfrak{g}=\mathfrak{s l}\left(W_{\mathbb{C}}\right)$ such that $\mathfrak{k}=\operatorname{Spanh},[h, e]=2 e,[h, f]=-2 f$ and $[e, f]=h$. Then Theorem 2.12 specializes to an isomorphism

$$
\mathfrak{Z}\left(\mathfrak{s l}_{2}\right) \cong \mathbb{C}[\Delta] ; \quad \mathfrak{Z}\left(\mathfrak{g l}_{2}\right) \cong \mathbb{C}[z, \Delta]
$$

where $\Delta=\frac{h^{2}}{2}+f e+e f=\frac{h^{2}}{2}+h+2 f e=\frac{h^{2}}{2}-h+2 e f$.
4.3. Principal series. First consider $\mathbb{G}=\mathrm{SL}(W)$. A line $W_{1} \subset W$ gives a Borel subgroup $\mathbb{B} \subset \mathbb{G}$. Using the quadratic form we get a decomposition $W=W_{1} \oplus W_{1}^{\perp}$. We have $B=M A N$ where $M=\{ \pm 1\}$, $A=\mathbb{R}_{>0}$ acting as diagonal matrices with respect to the decomposition above, and N acts as the identity on W_{1}. For any $\lambda \in \mathbb{C}$ and $\epsilon \in\{0,1\}$ we may define a character $(\epsilon, \lambda): M \times A \rightarrow \mathbb{C}^{\times}$such that $(m, a) \mapsto m^{\epsilon} a^{\lambda}$. The induction $\operatorname{Ind}_{B}^{G}(\epsilon, \lambda)$ has the following more concrete realization

$$
\operatorname{Ind}_{B}^{G}(\epsilon, \lambda)=\left\{\text { continuous } f: W-\{0\} \rightarrow \mathbb{C}\left|f(a w)=|a|^{-\lambda-1} \operatorname{sgn}(a)^{\epsilon} f(w), \forall w \in W-\{0\}, a \in \mathbb{R}^{\times}\right\}\right.
$$

Recall that we may view W as a 1-dimensional \mathbb{C}-vector space and K acts on W by multiplication via $\iota: K \hookrightarrow \mathbb{C}^{\times}$. For $i \in \mathbb{Z}$ let $f_{i}: W-\{0\} \rightarrow \mathbb{C}$ be a function satisfying $f(a \iota(k) w)=\iota(k)^{-i} a^{-\lambda-1} f(w)$ for all $a \in \mathbb{R}^{>0}, w \in W-\{0\}$ and $k \in K$. Such functions are unique up to a scalar. Let $V(\epsilon, \lambda)$ be the (\mathfrak{g}, K)-module of $\operatorname{Ind}_{B}^{G}(\epsilon, \lambda)$. Then

$$
V(\epsilon, \lambda)=\operatorname{Span}\left\{f_{i}\right\}_{i \equiv \epsilon(2)} .
$$

The infinitesimal character of $\operatorname{Ind}_{B}^{G}(\epsilon, \lambda)$ is $\Delta \mapsto \frac{\lambda^{2}-1}{2}$.
For $\mathbb{G}^{\prime}=\mathrm{GL}(W)$, let $B^{\prime}=M^{\prime} A^{\prime} N$ be the Borel in \mathbb{G}^{\prime} containing B fixed above. We have $M^{\prime} \cong$ $\{ \pm 1\} \times\{ \pm 1\}$ and $A^{\prime} \cong \mathbb{R}_{>0} \times \mathbb{R}_{>0}$. We similarly define $\operatorname{Ind}_{B^{\prime}}^{G^{\prime}}\left(\epsilon_{1}, \epsilon_{2}, \lambda_{1}, \lambda_{2}\right)$, with $\epsilon_{1}, \epsilon_{2} \in\{0,1\}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{C}$, as the space of functions $f: G \rightarrow \mathbb{C}$ such that $f($ gman $)=m_{1}^{\epsilon_{1}} m_{2}^{\epsilon_{2}} a_{1}^{-\lambda-1 / 2} a_{2}^{-\lambda_{2}+1 / 2} f(g)$.

The center $\mathbb{R}^{\times} \subset G^{\prime}$ acts on it via the character $a \mapsto \operatorname{sgn}(a)^{\epsilon_{1}+\epsilon_{2}}|a|^{-\lambda_{1}-\lambda_{2}}$. Restricting to G we get an isomorphism

$$
\operatorname{Res}_{G}^{G^{\prime}} \operatorname{Ind}_{B^{\prime}}^{G^{\prime}}\left(\epsilon_{1}, \epsilon_{2}, \lambda_{1}, \lambda_{2}\right) \cong \operatorname{Ind}_{B}^{G}\left(\epsilon_{1}-\epsilon_{2}, \lambda_{1}-\lambda_{2}\right)
$$

Denote the $\left(\mathfrak{g}^{\prime}, K^{\prime}\right)$-module of $\operatorname{Ind}_{B^{\prime}}^{G}\left(\epsilon_{1}, \epsilon_{2}, \lambda_{1}, \lambda_{2}\right)$ by $V\left(\epsilon_{1}, \epsilon_{2}, \lambda_{1}, \lambda_{2}\right)$, then

$$
V\left(\epsilon_{1}, \epsilon_{2}, \lambda_{1}, \lambda_{2}\right)=\bigoplus_{i \geq 0, i \equiv \epsilon_{1}-\epsilon_{2}(2)} \operatorname{Span}\left\{f_{i}, f_{-i}\right\}
$$

with each summand an irreducible representation of K^{\prime}.
4.4. Irreducible (\mathfrak{g}, K)-modules. First consider the case $\mathbb{G}=\mathrm{SL}(V)$. Let V be a (\mathfrak{g}, K)-module. Since K is a compact torus, we have a decomposition into weight spaces of K

$$
V=\bigoplus_{n \in \mathbb{Z}} V(n)
$$

with K acting on $V(n)$ via the character $k \mapsto \iota(k)^{n}$. We also have $e: V(n) \rightarrow V(n+2)$ and $f: V(n) \rightarrow$ $V(n-2)$, satisfying that $[e, f]=n$ on $V(n)$.

Now assume V is irreducible with infinitesimal character $\Delta \mapsto \xi$. Then V has a parity $\epsilon(V) \in\{0,1\}$: $V(n)=0$ unless $n \equiv \epsilon(V) \bmod 2$. This can be read from the action of the center $\{ \pm 1\} \subset K \subset G$. Starting from some nonzero vector $v \in V(\ell)$, then $U(\mathfrak{g}) v$ is spanned by $\left\{v, e^{n} v, f^{n} v\right\}_{n=1,2, \ldots}$ (e.g., to compute $f e^{n} v$, we only need to note that $\left.f e=\frac{1}{4}\left(\Delta-(h+1)^{2}\right)=\frac{1}{4}\left(\xi-(h+1)^{2}\right)\right)$. Therefore, for irreducible V, $\operatorname{dim} V(n) \leq 1$ and n 's such that $V(n) \neq 0$ form a chain with step 2 . There are three cases:
(1) ξ cannot be written as $\frac{1}{2} \ell(\ell+2)$ for some integer $\ell \equiv \epsilon(V) \bmod 2$. Then there is up to isomorphism a unique irreducible (\mathfrak{g}, K)-module with infinitesimal character $\Delta \mapsto \xi$ and parity $\epsilon(V)$. It is isomorphic to $V(\epsilon, \lambda)$ for $(\lambda+1)^{2}=\xi$.
(2) $\xi=\frac{1}{2} \ell(\ell+2)$ for some integer $\ell \geq 0$ and $\ell \equiv \epsilon(V) \bmod 2$. Then either $V \cong \operatorname{Sym}^{\ell}\left(W_{\mathbb{C}}\right)($ if $\ell \geq 0)$; or $V \cong V_{\ell+2}^{+}:=\bigoplus_{n>\ell, n \equiv \ell(2)} V(n)$; or $V \cong V_{\ell+2}^{-}:=\bigoplus_{n<-\ell, n \equiv \ell(2)} V(n)$. The last two are the holomorphic and anti-holomorphic discrete series representations of G respectively. We have exact sequences of (\mathfrak{g}, K)-modules

$$
\begin{gathered}
0 \rightarrow V_{\ell+2}^{+} \oplus V_{\ell+2}^{-} \rightarrow V(\ell \bmod 2, \ell+1) \rightarrow \operatorname{Sym}^{\ell}\left(W_{\mathbb{C}}\right) \rightarrow 0 \\
0 \rightarrow \operatorname{Sym}^{\ell}\left(W_{\mathbb{C}}\right) \rightarrow V(\ell \bmod 2,-\ell-1) \rightarrow V_{\ell+2}^{+} \oplus V_{\ell+2}^{-} \rightarrow 0
\end{gathered}
$$

Realization of $V_{\ell+2}^{ \pm}$: holomorphic sections of the line bundle $\mathcal{O}_{\mathbb{P}^{1}}(-\ell-2)$ over the two components of $\mathbb{P}^{1}(\mathbb{C})-\mathbb{P}^{1}(\mathbb{R})$.
(3) $\xi=-\frac{1}{2}$ and $\epsilon(V)=1$. In this case either $V=V_{1}^{+}:=\bigoplus_{n \geq 1, n \equiv 1(2)} V(n)$; or $V=V_{1}^{-}:=$ $\bigoplus_{n \leq-1, n \equiv 1(2)} V(n)$. These are called the limits of discrete series representations, and

$$
V(1,0)=V_{1}^{+} \oplus V_{1}^{-}
$$

For $\mathbb{G}^{\prime}=\mathrm{GL}(W)$, we have an extra freedom of a central character of $\mathbb{R}^{>0} \ni a \mapsto a^{-\lambda_{0}}$ for some $\lambda_{0} \in \mathbb{C}$. We again have three cases as above. The only difference is that in cases (2) and (3), $V_{\ell+2}^{+} \oplus V_{\ell+2}^{-}$is an irreducible ($\mathfrak{g}^{\prime}, K^{\prime}$)-module.
4.5. Unitary representations. Reference: [4]. For $G=\mathrm{SL}(W)$, the following is a complete list of irreducible unitary (\mathfrak{g}, K)-modules without repetition (Bargmann's theorem)

- The trivial representation \mathbb{C};
- The principal series $V(\epsilon, \lambda)$ for $\lambda \in i \mathbb{R}^{>0}($ note $V(\epsilon, \lambda) \cong V(\epsilon,-\lambda))$;
- The complementary series $V(\epsilon, \lambda)$ for $0<\lambda<1$ (note $V(\epsilon, \lambda) \cong V(\epsilon,-\lambda)$);
- The discrete series V_{n}^{+}and V_{n}^{-}for $n \geq 2$;
- The limits of discrete series V_{1}^{+}and V_{1}^{-}.

Complete list of irreducible unitary $\left(\mathfrak{g}^{\prime}, K^{\prime}\right)$-modules:

- The 1-dimensional unitary representations $g \mapsto \operatorname{sgn} \operatorname{det}(g)^{\epsilon}|\operatorname{det}(g)|^{\lambda}$ with $\epsilon \in\{0,1\}$ and $\lambda \in i \mathbb{R}$;
- The principal series $V\left(0,0, \lambda_{1}, \lambda_{2}\right), V\left(1,1, \lambda_{1}, \lambda_{2}\right)$ (they differ by $\left.\otimes \operatorname{sgn}(\operatorname{det})\right)$ with $\lambda_{1}, \lambda_{2} \in i \mathbb{R}$ and $\lambda_{1} / i<\lambda_{2} / i ; V\left(0,1, \lambda_{1}, \lambda_{2}\right)$ for $\lambda_{1}, \lambda_{2} \in i \mathbb{R}$ and $\lambda_{1} \neq \lambda_{2}$;
- The complementary series $V\left(0,0, \lambda_{1}, \lambda_{2}\right), V\left(1,1, \lambda_{1}, \lambda_{2}\right)$ (they differ by $\left.\otimes \operatorname{sgn}(\operatorname{det})\right)$ with $0<\lambda_{1}-$ $\lambda_{2}<1$ and $\lambda_{1}+\lambda_{2} \in i \mathbb{R} ; V\left(0,1, \lambda_{1}, \lambda_{2}\right)$ with $\lambda_{1} \neq \lambda_{2},-1<\lambda_{1}-\lambda_{2}<1$ and $\lambda_{1}+\lambda_{2} \in i \mathbb{R}$;
- The discrete series $V_{n}^{+} \oplus V_{n}^{-}$for $n \geq 2$;
- The limit of discrete series $V_{1}^{+} \oplus V_{1}^{-}$.
4.6. Classification in general: D-modules. Reference: [2]. Now \mathbb{G} is a general connected real reductive group. Fix a character $\xi \in \operatorname{Spec} \mathfrak{Z}(\mathfrak{g})$. Let $(\mathfrak{g}, K)-\bmod _{\xi}$ be the abelian category of finitely generated (\mathfrak{g}, K)-modules on which $\mathfrak{Z}(\mathfrak{g})$ acts by scalars via ξ. Suppose ξ corresponds to the W-orbit of $\lambda+\rho \in \mathfrak{h}^{*}$ by Theorem 2.12 (under the usual W-action), and that $\lambda+\rho$ is dominant and regular, then the localization functor gives an equivalence of categories

$$
(\mathfrak{g}, K)-\bmod _{\xi} \cong D_{\lambda}-\bmod (X)^{\mathbb{K}_{\mathbb{C}}}
$$

where the superscript $\mathbb{K}_{\mathbb{C}}$ stands for $\mathbb{K}_{\mathbb{C}}$-equivariant twiste D-modules. In particular, irreducible (\mathfrak{g}, K)modules with infinitesimal character ξ are parametrized by irreducible D_{λ}-modules over the $\mathbb{K}_{\mathbb{C}}$-orbit closures on X. When $\lambda+\rho$ is integral, regular and dominant (which means $\langle\lambda, \alpha\rangle \in \mathbb{Z}_{\geq 0}$ for all positive roots α), then we have a bijection
\{irreducible (\mathfrak{g}, K)-modules with infinitesimal character $\xi\}$

$$
\leftrightarrow \quad\left\{(O, \rho) \mid O \subset X \text { is a } \mathbb{K}_{\mathbb{C}} \text {-orbit, } \rho \text { is an irreducible representation of } \pi_{0}\left(\mathbb{K}_{\mathbb{C}, x}\right) \text { for some } x \in O\right\}
$$

When $\mathbb{G}=\mathrm{SL}(W)$, there are three $\mathbb{K}_{\mathbb{C}}$-orbits on $X=\mathbb{P}_{\mathbb{C}}^{1}$: two points which we call $\{0\}$ and $\{\infty\}$ and $U=\mathbb{P}^{1}-\{0, \infty\}$. The stabilizer of $\mathbb{K}_{\mathbb{C}}$ on U is $\{ \pm 1\}$. When $\xi=\frac{1}{2} \ell(\ell+2)$ for some integer $\ell \geq 0$, the corresponding $\lambda+\rho$ can be whosen to be $(\ell+1) \rho$, which is integral, regular and dominant. In this case we have four pairs (O, ρ) (when $O=U$ we have two choices of ρ). The discrete series $D_{\ell+2}^{ \pm}$correspond to the two point orbits. Let $\epsilon=\ell \bmod 2$, which also denotes the trivial or sign representation of $\{ \pm 1\}$ (stabilizer of $\mathbb{K}_{\mathbb{C}}$ on $\left.U\right)$. The pair (U, ϵ) then corresponds to the finite-dimensional representation $\operatorname{Sym}^{\ell}\left(W_{\mathbb{C}}\right)$; the rest corresponds to the irreducible principal series $V(1-\epsilon, \ell+1)$.

References

[1] Beilinson, A.; Bernstein, J. A generalization of Casselman's submodule theorem. Representation theory of reductive groups (Park City, Utah, 1982), 35-52, Progr. Math., 40, Birkhäuser Boston, Boston, MA, 1983.
[2] Beilinson, A.; Bernstein, J. A proof of Jantzen conjectures. I. M. Gel'fand Seminar, 1-50, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, 1993.
[3] Representation theory and automorphic forms (Edinburgh, 1996), Lectures by Knapp, Donley, Baldoni and van den Ban. Proc. Sympos. Pure Math., 61, Amer. Math. Soc., Providence, RI, 1997.
[4] Knapp, A.W. Representations of $\mathrm{GL}_{2}(\mathbb{R})$ and $\mathrm{GL}_{2}(\mathbb{C})$. Proceedings of Symposia in Pure Mathematics, Vol. 33 (1979), part 1, 87-91.
[5] Vogan, D. Notes from a course given at MIT in 2011.
Department of Mathematics, Stanford University, 450 Serra Mall, Building 380, Stanford, CA 94305
E-mail address: zwyun@stanford.edu

[^0]: ${ }^{1}$ It means a vector space whose topology is induced from a family of seminorms.

