
INTRODUCTION TO REAL GROUP REPRESENTATIONS

ZHIWEI YUN

Contents

1. Some structure theory 1
2. Notions of representations 3
3. Parabolic induction 6
4. GL2 and SL2 7
References 9

1. Some structure theory

General reference: Knapp’s lecture in [3].

1.1. The groups. Let G be a connected reductive algebraic group over R, and G = G(R). Starting with
G one can construct the following diagram

(1.1) GC

θ

{{
{{
{{
{{
σ

σ0

BB
BB

BB
BB

KC

CC
CC

CC
CC

G G0

{{
{{
{{
{{

K

We first explain the groups. Here GC = G ⊗R C. The R-group K ⊂ G is a (possibly disconnected)
reductive subgroup such that K = K(R) is Zariski dense in K and K is a maximal compact subgroup of G.
We set KC = K⊗R C. Finally G0 is the unique compact real form of GC containing K. The lines in (1.1)
are inclusions of real algebraic groups (viewing GC, KC as real groups via Weil’s restriction of scalars).

1.2. Example. Let G = GLn = GL(V ) for a n-dimensional R-vector space V , the diagram (1.1) looks like

GL(VC)

rrr
rrr

rrr
r

KKK
KKK

KKK
K

O(VC, qC)

LLL
LLL

LLL
L

GL(V ) U(VC, h)

sss
sss

sss
s

O(V, q)

Here q : V → R is a positive definite quadratic form; VC = V ⊗R C; qC is the complexification of q;
h : VC × VC → C is the unique Hermitian form extending q, i.e., h(av, av) = |a|2q(v) for all v ∈ VR, a ∈ C.
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2 ZHIWEI YUN

1.3. Example. Let (V, q) be a nondegenerate quadratic space over R and let G = SO(V, q). Choose an
orthogonal decomposition V = V + ⊕ V − such that q+ := q|V + (resp. q− := q|V −) is positive (resp.
negative) definite. Then the diagram (1.1) looks like

SO(VC, qC)

hhhhh
hhhhh

hhhhh
hhhh

TTTT
TTTT

TTTT
TTTT

S(O(V +
C , q

+
C )×O(V −C , q

−
C ))

VVVVV
VVVVV

VVVVV
VVVV

SO(V, q) SO(V, q+ − q−)

jjjj
jjjj

jjjj
jjjj

S(O(V +, q+)×O(V −, q−))

1.4. Involutions. We then explain the involutions θ, σ and σ0. The real form G of GC corresponds to
an involution σ : GC → GC ⊗C,c C where c denotes complex conjugation (we call such an involution

anti-holomorphic). We have G = (ResCRGC)σ, where we view σ as an involution of ResCRGC. Similarly, the
compact real form G0 corresponds to an anti-holomorphic involution σ0 of GC. The involutions σ and
σ0 commute with each other and θ = σσ0 = σ0σ ∈ AutC(GC) is an involution of GC over C. We have

KC = GθC. Moreover, K = (ResCRGC)σ0,σ.

1.5. Theorem (Cartan). The G(C)-conjugacy class of θ is uniquely determined by the real form G of GC.
The correspondence G 7→ θ gives a bijection

{real forms of GC}/isom↔ {involutions of GC over C}/GC(C)

Special cases: compact real form ↔ θ = 1; split real form ↔ Chevalley involutions.

1.6. Lie algebras. Let g = Lie GC. We have a decomposition of g into eigenspaces of θ

g = k⊕ p

where k = gθ and p is the (−1)-eigenspace of θ on g. Similarly, the real Lie algebra gR = Lie G has a
decompostion gR = kR ⊕ pR into eigenspaces of θ|gR . On the level of Lie algebras, diagram (1.1) becomes

k⊕ p
θ=(1,−1)

yy
yy
yy
yy
y

σ=(c,c)
σ0=(c,−c)

KK
KK

KK
KK

K

k

EE
EE

EE
EE

EE kR ⊕ pR k⊕ ipR

ss
ss
ss
ss
ss

kR

Here c denotes the complex conjugation on k or p with respect to the real structure kR or pR.

1.7. Polar decomposition. The map

K × pR → G

(k,X) 7→ k exp(X)

is a diffeomorphism. In particular the symmetric space G/K is diffeomorphic to the vector space pR.

1.8. Iwasawa decomposition. Let aR ⊂ pR be a maximal subalgebra (automatically commutative).
Then A = exp(aR) is a subgroup of G, and there is a unique split R-torus A ⊂ G such that A = A(R)◦

(neutral component). Let M = CK(A) ⊂ K and let N be a maximal unipotent subgroup of G normalized
by A. Let M = M(R) and N = N(R). Then

(1) There is a unique minimal parabolic subgroup P ⊂ G with Levi factor L = MA and unipotent
radical N. Multiplication gives a diffeomorphism M × A × N ∼= P = P(R). The decomposition
P = MAN is called the Langlands decomposition for P . In particular, A = A(R)◦ where A is the
split center of L (i.e., the maximal R-torus in the center of L).
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(2) Multiplication gives a diffeomorphism (Iwasawa decomposition)

K ×A×N ∼= G.

1.9. Cartan decomposition. G = KAK.

1.10. Example. Polar decomposition for G = GLn. Choose K = O(q) with q =
∑
i x

2
i . Then pR consists

symmetric real matrices and exp(pR) consists of positive definite symmetric matrices. Every matrix A can
be written uniquely as A = OS where O is orthongal with respect to q and S is symmetric and positive
definite. In fact, At · A is positive definite, hence admits a square root S which is again positive definite.
Then let O = AS−1.

Iwasawa decomposition for G = GLn. Take A to be the group of diagonal matrices with positive entries
and N upper triangular unipotent real matrices. Every matrix A can be written uniquely as A = ODU
with O ∈ K,D ∈ A and U ∈ N . This follows from the Gram-Schmidt orthogonalization procedure for the
positive definite matrix At ·A.

1.11. Example. Let us take a non-split example G = U(V, h) for a non-degenerate Hermitian form h on a
complex vector space V of signature (p, q) and p ≤ q. Choose an orthogonal decomposition V = V +⊕V −
such that h|V +

C
> 0, h|V −C < 0. Then K = U(V +, h) × U(V −, h) is a maximal compact of G, and

pR ∼= HomC(V +, V −) (really should be thought of as a pair of maps V + → V − and V − → V + adjoint to
each other).

Choose an orthonormal basis e+1 , · · · , e+p of V + and an orthonormal (norms are -1) basis e−1 , · · · , e−q of

V −. Let aR ⊂ pR consist of maps V + → V − sending e+j to Re−j . Then aR is a maximal subalgebra of pR,

and it corresponds to a maximally split torus in G = U(V, h).
For each j, fj = e+j + e−j is isotropic. Let Fj = SpanC{f1, · · · , fj} for j = 1, · · · , p. The parabolic P

adapted to aR in this situation is the stabilizer of the flag

(1.2) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fp ⊂ F⊥p ⊂ · · · ⊂ F⊥1 ⊂ V.
For a description of M,A and N , see Example 3.2.

2. Notions of representations

General reference: Baldoni’s lecture in [3]. Partially follow [5].

2.1. Definition. (1) A representation of G is a complete locally convex topological 1 C-vector space
V with a continuous action G× V → V . We denote the homomorphism G→ GL(V ) by π.

(2) A unitary representation of G is a Hilbert space V with a continuous unitary action of G.
(3) A representation (π, V ) of G is called irreducible if it does not contain nonzero proper closed

subspace V ′ ⊂ V stable under G.

2.2. Smooth vectors. A vector v ∈ V is C1 if for any X ∈ gR the derivative

X · v := lim
t→0

π(exp(tX))v − v
t

exists. Similarly we may define Ck vectors. A smooth vector v ∈ V is one which is Ck for all k ≥ 1. Let
V∞ ⊂ V be the subspace of smooth vectors. This is stable under G.

2.3. Theorem (Garding). Let (π, V ) be a representation of G. Then

(1) The subspace V∞ is dense in V ;
(2) The subspace V∞ carries a natural action of g (hence U(g)).

Sketch of proof of (1). For any smooth compactly supported measure φ on G and v ∈ V , the vector

π(φ)v =

∫
G

φ(g)π(g)v

belongs to V∞. The space spanned by such π(φ)v is already dense in V . �

1It means a vector space whose topology is induced from a family of seminorms.
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For example, consider the right regular representation of G on V = L2(G). Then V∞ consists of smooth
L2-functions on G with all derivatives (of arbitrary order) still L2.

2.4. K-finite vectors. Let V1 be a continuous K-module. A vector v ∈ V1 is K-finite if π(k)v (∀k ∈ K)

span a finite-dimensional subspace. Let V
(K)
1 denote the K-finite vectors in V1; V1 is called locally finite

(under the action of K) if V
(K)
1 = V1. Representation theory of the compact group K gives

V
(K)
1
∼=

⊕
µ∈Irr(K)

Eµ ⊗HomK(Eµ, V1).

Here Eµ is the finite-dimensional C-vector space affording the irreducible representation µ of K. In

particular, the action of K on V
(K)
1 is analytic, because the action of K on each Eµ is.

When V is a representation of G, V (K) is dense in V . Warning: V (K) is not stable under G! (It depends
on the choice of K).

2.5. Definition. A (g,K)-module is a C-vector space V equipped with

• A representation of g on V ; (⇔ V is a U(g)-module)
• A locally finite and continuous action of K (hence analytic);

subject to the conditions

(1) The differential of the K-action on V is equal to the k-action restricted from the g-action on V .
(2) For k ∈ K,X ∈ g, v ∈ V we have

k · (X · v) = (Ad(k)X) · (k · v).

Note that the second condition is only needed when K is disconnected. One can similarly define the
notation of (g,KC)-modules by requiring V to be a union of finite-dimensional algebraic representations
of KC. This notion is equivalent to the notion of (g,K)-modules. Therefore, (g,K)-module is a purely
algebraic notion.

We have a functor

{representations of G} → (g,K)-mod

V 7→ V∞,(K) := V∞ ∩ V (K).

The subspace V∞,(K) is also dense in V . Two representations of G are called infinitesmially equivalent if
they give the same (g,K)-module by the above functor.

2.6. Definition. A (g,K)-module V is called admissible if each irreducible representation of K appears
in V with finite multiplicity. Likewise, a representation (π, V ) of G is admissible if each irreducible
representation of K appears in V (K) with finite multiplicity.

2.7. Theorem (Harish-Chandra). If (π, V ) is an admissible representation of G, then there is a one-to-one
bijection between closed G-invariant subspaces of V and sub-(g,K)-modules of V∞,(K). In particular, an
admissible representation (π, V ) is irreducible if and only the (g,K)-module V∞,(K) is irreducible.

Key ingredient: If (π, V ) is admissible, then V (K) ⊂ V∞ (even contained in analytic vectors). Proof
uses regularity of elliptic operators.

2.8. Corollary. Schur’s lemma holds for admissible representations of G.

Proof. Let (π, V ) be an irreducible admissible representation of G. Let EndG(V ) be the continuous G-
endomorphisms of V . The map EndG(V )→ End(g,K)(V

(K)) is injective since V (K) is dense in V . However,

since V (K) is irreducible as a (g,K)-module by Theoerem 2.7, End(g,K)(V
(K)) is a division algebra over

C. Moreover, admissibility of V (K) implies that End(g,K)(V
(K)) has countable dimension. Therefore

End(g,K)(V
(K)) = C (same as Jacquet’s argument for p-adic groups). �

Discrete series will be elaborated in the next lecture by Akshay. We only give definition here.
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2.9. Definition-Lemma (Godement). The following are equivalent for a unitary representation (π, V ) of
G

(1) (π, V ) unitarily embeds into the left regular representation of G on L2(G);
(2) Every matrix coefficient of V is square-integrable;
(3) There exists a nonzero matrix coefficient of V which is square-integrable.

If (π, V ) satisfies the above conditions, it is called a discrete series representation of G.

2.10. Infinitesimal characters. Let U(g) be the universal enveloping algebra of g. Let Z(g) denote
the center of U(g). To get a sense of how large Z(g) is, consider the filtration of U(g) by degree. Since
Z(g) = U(g)G, GrZ(g) ∼= (GrU(g))G (exactness of (−)G) ∼= Sym(g)G ∼= Sym(h)W (last isom: Chevalley).

2.11. Definition (Harish-Chandra). A representation (π, V ) of G is quasi-simple if the center Z(g) acts
as a scalar on V∞.

Note: Irreducible unitary representations of G are quasi-simple.
Let h be a Cartan subalgebra of g with Weyl group W . Note that the quotient h∗ �W is independent

of the choice of h: it is identified with g∗ �G by Chevalley’s theorem.

2.12. Theorem (Harish-Chandra). There is a canonical isomorphism Spec Z(g) ∼= h∗ � W . For an
irreducible g-module Vλ with highest weight (with respect to the choice of a Borel b containing h) λ ∈ h∗,
Z(g) acts on Vλ via the ξ ∈ Spec Z(g) which corresponds to the W -orbit of λ + ρ (2ρ is the sum of roots
appearing in b).

Sketch of proof. Choose a triangular decomposition g = n+⊕ h⊕ n−. We have U(g) ∼= U(n−)⊗ Sym(h)⊗
U(n+) as vector spaces. Every Z ∈ Z(g) can be written as Z = Z0 + Z+ where Z+ ∈ U(g)n+ and
Z0 ⊂ U(n−)⊗ Sym(h). The fact that Z commutes with h implies Z0 ∈ Sym(h).

One checks that Z0 is invariant under the dot-action of W on h∗

w · λ = w(λ+ ρ)− ρ, ∀w ∈W,λ ∈ h∗.

The assignment Z 7→ Z0 ∈ Sym(h)(W,·) gives an algebra isomorphism Z(g) ∼= Sym(h)(W,·). Shifting by ρ
gives an isomorphism h∗ � (W, ·) ∼= h∗ �W . �

For a quasi-simple representation (π, V ), the action of Z(g) is via a character of ξ ∈ Spec Z(g), which
correspond to a W -orbit in h∗ by the above theorem. The character ξ is called the infinitesimal character
of (π, V ).

2.13. Theorem (Harish-Chandra; Lepowsky). Every finitely-generated quasi-simple (g,K)-module is ad-
missible. The multiplicity of λ ∈ Irr(K) in any irreducible (g,K)-module V is bounded by a constant which
only depends on λ.

The proof of the Theorem involves a detailed study of the algebra (U(g) ⊗U(k) R(K))K (Lepowsky).
Here R(K) = ⊕µ∈Irr(K)End(Eµ) is the space of matrix coefficients of K. The key point is to show an
algebra embedding

(U(g)⊗U(k) R(K))K ↪→ Sym(a)⊗R(K)M,op

and the target has a large center. The argument is similar to that of Theorem 2.12.
Using this theorem, Theorem 2.7 can be extended to all quasi-simple G-representations.

2.14. Summary. We have

Irr(G)disc ↪→ Irr(G)unitary ↪→ Irr(G)quasi-simple � Irr(g,K).

All the above are admissible.
The composition Irr(G)unitary → Irr(g,K) is injective, with image consisting of those irreducible (g,K)-

modules admitting a positive definite (g,K)-invariant Hermitian form. (Reason for injectivity: suppose V1
and V2 are unitary reps with T : V

(K)
1
∼= V

(K)
2 as (g,K)-modules. First try to extend T to a K-equivariant

isometry T̃ : V1
∼→ V2. Then using the fact that the K-finite matrix coefficients are analytic functions on

G, one checks that T̃ sends matrix coefficients of V1 to the corresponding matrix coefficients of V2 (enough

to check U(g)-action by analyticity). Therefore T̃ is also G-equivariant. )
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3. Parabolic induction

3.1. Standard parabolics. Let P = P(R) = MAN be a minimal parabolic. A standard parabolic of G
is the R-points of a parabolic of G containing P. These are in bijection with subsets of ∆ ⊂ X∗(A) (simple
roots of A with respect to N).

Let QJ be a standard parabolic corresponding to J ⊂ ∆, then it has a Langlands decomposition
QJ = MJAJNJ . Here AJ = ∩α∈J ker(α) ⊂ A, which is the neutral component of the R-points of a
subtorus AJ ⊂ A. Let LJ = CG(AJ) be the Levi subgroup of QJ with R-points LJ . There is unique
subgroup MJ ⊂ LJ with compact center which is complementary to AJ (MJ may not be connected). We
also write the Langlands decomposition as Q = MQAQNQ.

3.2. Example. Let G = U(V, h) as in Example 1.11. Standard parabolic subgroups of G are stabilizers
of a partial flag (a self-dual subset of (1.2)):

0 ⊂ Fi1 ⊂ · · · ⊂ Fis ⊂ F⊥is ⊂ · · · ⊂ F
⊥
i1 ⊂ V

with 1 ≤ i1 < i2 < · · · < is ≤ p. For Q equal to the stabilizer of this partial flag, we have

LQ =

s∏
j=1

GLC(Fij/Fij−1)× U(F⊥is /Fis , h).

AQ =

s∏
j=1

R>0 · id× {1}.

MQ = ker(LQ
| det |−−−→

s∏
j=1

R>0).

NQ = ker(Q→ LQ).

3.3. Induction. Let Q = MQAQNQ ⊂ G be a standard parabolic. Let (σ, Vσ) be a representation of MQ

and λ ∈ a∗Q (where aQ = (Lie AQ)C). Let 2ρQ be the weight of the action of AQ on NQ. Then the induced

representation IndGQ(σ, λ) := IndGQ(σ⊗ (λ+ρQ)⊗ 1) is the completion of the space of continuous functions
f : G→ Vσ such that

f(gman) = e−〈λ+ρQ,log(a)〉σ(m)−1f(g).

(withG acting by left translation). Alternatively, this can be viewed as a space of sections of a homogeneous
bundle over G/Q with fibers Vσ.

3.4. Special case: induction from a minimal parabolic. When Q = P is minimal, M is compact.
In this case we take a finite-dimensional irreducible representation σ ∈ Irr(M).

Since G = KAN , we may alternative describe IndGP (σ, λ) as (completion of) the space of functions
f : K → Vσ satisfying f(km) = σ(m−1)f(k). Hence, as K-module we have

(ResGKIndGP (σ, λ))(K) ∼= (IndKMVσ)(K).

In particular, the multiplicity of µ ∈ Irr(K) in IndGP (σ, λ)) is

(3.1) HomK(Eµ, IndGP (σ, λ))) = HomK(Eµ, IndKMVσ) = HomM (ResKMEµ, Vσ).

3.5. Theorem (Casselman’s submodule theorem). Any irreducible (g,K)-module appears as a sub-(g,K)-

module of some induced representation IndGP (σ, λ) for some σ ∈ Irr(M) and λ ∈ a∗.

Outline of proof. By Frobenius reciprocity, it suffices to show that Vn := V/nV 6= 0, where n = (Lie N)C ⊂
g. There are two proofs of this fact.

Casselman’s original proof uses estimates of matrix coefficents. For v ∈ V (K) and v∗ ∈ (V ∗)(K), the
matrix coefficient a 7→ 〈v∗, π(a)v〉 (a ∈ A+, dominant part of A) can be expanded as an ansolutely
convergent series

∑
λ,µ cλ,µ(v∗, v)aλ(log a)µ for a discrete bounded above subset λ ∈ a∗ and µ in the

positive root semigroup. Fix v∗, take a maximal λ (under the order induced from simple roots ∆+) such
that fλ(v, a) =

∑
µ cλ,µa

λ(log a)µ 6= 0, then fλ gives a nonzero map Vn → C∞(A+); in particular Vn 6= 0.
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Beilinson and Bernstein [1] gave an algebraic proof of the fact Vn 6= 0. They reduce to showing that
for any finitely generated U(g)-module V , Vn′ 6= 0 for a Zariski dense choice of n′ (parametrized by the
flag variety X of GC). Then when V is a (g,K)-module, the action of KC on X allows one to conclude
that Vn 6= 0 because n lies in the open K(C)-orbit of X. The strategy for showing Vn′ 6= 0 is by relating
V to (twisted) D-modules over X. Suppose the infinitesimal character ξ corresponds to the W -orbit of
λ+ ρ ∈ h∗ under Theorem 2.12, there is a localization functor

∆λ : U(g)ξ-mod→ Dλ-mod(X)

When χ is regular and dominant, this is an equivalence of categories. The stalk of ∆λ(V ) at n′ ∈ X
is Vn′(λ) (weight space for h), and we reduce to show that the support of ∆λ(V ) is Zariski dense. The
dominant λ + ρ may not give this right away, and one uses intertwining operators to switch between
different λ+ ρ’s in the W -orbit, to eventually find one λ such that ∆λ(V ) has full support.

�

Combining this theorem with the calculation (3.1), we see that the multiplicity of µ ∈ Irr(K) in any
irreducible (g,K)-module is bounded by the maximum of the mutiplicities of irreducible representations

of M appearing in ResKMEµ. This is a number which only depends on µ and not on the (g,K)-module.
This gives a proof of the second of part of Theorem 2.13.

4. GL2 and SL2

4.1. The maximal compact. Let W be a two-dimensional vector space over R. Let G = SL(W ) and
G′ = GL(W ). Choose a volume form ω ∈ ∧2(W ) and a positive definite quadratic form q : W → R. Let
K = SO(W, q) < G and K′ = O(V, q) < G′. Note that (ω, q) uniquely determines a complex structure
J : W → W such that bq(Jx, y) = (x ∧ y)/ω (bq is the symmetric bilinear form associated with q), so
that W becomes a 1-dimensional C-vector space. Elements in K = SO(W, q) preserve both q and ω, hence

commutes with J . This gives a canonical embedding ι : K ↪→ ResCRGm = AutJ(W ) and identifies K with
the unit circle in C×.

4.2. Center of U(g). Let z = diag(1, 1) ∈ g′ = gl(WC). Since K = SO(W, q) is a maximal torus in G, we
may choose a basis {e, h, f} for g = sl(WC) such that k = Spanh, [h, e] = 2e, [h, f ] = −2f and [e, f ] = h.
Then Theorem 2.12 specializes to an isomorphism

Z(sl2) ∼= C[∆]; Z(gl2) ∼= C[z,∆].

where ∆ = h2

2 + fe+ ef = h2

2 + h+ 2fe = h2

2 − h+ 2ef .

4.3. Principal series. First consider G = SL(W ). A line W1 ⊂W gives a Borel subgroup B ⊂ G. Using
the quadratic form we get a decomposition W = W1 ⊕W⊥1 . We have B = MAN where M = {±1},
A = R>0 acting as diagonal matrices with respect to the decomposition above, and N acts as the identity
on W1. For any λ ∈ C and ε ∈ {0, 1} we may define a character (ε, λ) : M × A → C× such that

(m, a) 7→ mεaλ. The induction IndGB(ε, λ) has the following more concrete realization

IndGB(ε, λ) = {continuous f : W − {0} → C|f(aw) = |a|−λ−1sgn(a)εf(w),∀w ∈W − {0}, a ∈ R×}.

Recall that we may view W as a 1-dimensional C-vector space and K acts on W by multiplication via
ι : K ↪→ C×. For i ∈ Z let fi : W − {0} → C be a function satisfying f(aι(k)w) = ι(k)−ia−λ−1f(w)
for all a ∈ R>0, w ∈ W − {0} and k ∈ K. Such functions are unique up to a scalar. Let V (ε, λ) be the

(g,K)-module of IndGB(ε, λ). Then

V (ε, λ) = Span{fi}i≡ε(2).

The infinitesimal character of IndGB(ε, λ) is ∆ 7→ λ2−1
2 .

For G′ = GL(W ), let B′ = M ′A′N be the Borel in G′ containing B fixed above. We have M ′ ∼=
{±1} × {±1} and A′ ∼= R>0 × R>0. We similarly define IndG

′

B′(ε1, ε2, λ1, λ2), with ε1, ε2 ∈ {0, 1} and

λ1, λ2 ∈ C, as the space of functions f : G → C such that f(gman) = mε1
1 m

ε2
2 a
−λ−1/2
1 a

−λ2+1/2
2 f(g).
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The center R× ⊂ G′ acts on it via the character a 7→ sgn(a)ε1+ε2 |a|−λ1−λ2 . Restricting to G we get an
isomorphism

ResG
′

G IndG
′

B′(ε1, ε2, λ1, λ2) ∼= IndGB(ε1 − ε2, λ1 − λ2).

Denote the (g′,K ′)-module of IndGB′(ε1, ε2, λ1, λ2) by V (ε1, ε2, λ1, λ2) , then

V (ε1, ε2, λ1, λ2) =
⊕

i≥0,i≡ε1−ε2(2)

Span{fi, f−i}.

with each summand an irreducible representation of K ′.

4.4. Irreducible (g,K)-modules. First consider the case G = SL(V ). Let V be a (g,K)-module. Since
K is a compact torus, we have a decomposition into weight spaces of K

V =
⊕
n∈Z

V (n),

with K acting on V (n) via the character k 7→ ι(k)n. We also have e : V (n) → V (n + 2) and f : V (n) →
V (n− 2), satisfying that [e, f ] = n on V (n).

Now assume V is irreducible with infinitesimal character ∆ 7→ ξ. Then V has a parity ε(V ) ∈ {0, 1}:
V (n) = 0 unless n ≡ ε(V ) mod 2. This can be read from the action of the center {±1} ⊂ K ⊂ G.
Starting from some nonzero vector v ∈ V (`), then U(g)v is spanned by {v, env, fnv}n=1,2,··· (e.g., to
compute fenv, we only need to note that fe = 1

4 (∆ − (h + 1)2) = 1
4 (ξ − (h + 1)2)). Therefore, for

irreducible V , dimV (n) ≤ 1 and n’s such that V (n) 6= 0 form a chain with step 2. There are three cases:

(1) ξ cannot be written as 1
2`(`+2) for some integer ` ≡ ε(V ) mod 2. Then there is up to isomorphism

a unique irreducible (g,K)-module with infinitesimal character ∆ 7→ ξ and parity ε(V ). It is
isomorphic to V (ε, λ) for (λ+ 1)2 = ξ.

(2) ξ = 1
2`(`+ 2) for some integer ` ≥ 0 and ` ≡ ε(V ) mod 2. Then either V ∼= Sym`(WC) (if ` ≥ 0);

or V ∼= V +
`+2 :=

⊕
n>`,n≡`(2) V (n); or V ∼= V −`+2 :=

⊕
n<−`,n≡`(2) V (n). The last two are the

holomorphic and anti-holomorphic discrete series representations of G respectively. We have exact
sequences of (g,K)-modules

0→ V +
`+2 ⊕ V

−
`+2 → V (` mod 2, `+ 1)→ Sym`(WC)→ 0;

0→ Sym`(WC)→ V (` mod 2,−`− 1)→ V +
`+2 ⊕ V

−
`+2 → 0.

Realization of V ±`+2: holomorphic sections of the line bundle OP1(−`−2) over the two components

of P1(C)− P1(R).
(3) ξ = − 1

2 and ε(V ) = 1. In this case either V = V +
1 :=

⊕
n≥1,n≡1(2) V (n); or V = V −1 :=⊕

n≤−1,n≡1(2) V (n). These are called the limits of discrete series representations, and

V (1, 0) = V +
1 ⊕ V

−
1 .

For G′ = GL(W ), we have an extra freedom of a central character of R>0 3 a 7→ a−λ0 for some λ0 ∈ C.
We again have three cases as above. The only difference is that in cases (2) and (3), V +

`+2 ⊕ V
−
`+2 is an

irreducible (g′,K ′)-module.

4.5. Unitary representations. Reference: [4]. For G = SL(W ), the following is a complete list of
irreducible unitary (g,K)-modules without repetition (Bargmann’s theorem)

• The trivial representation C;
• The principal series V (ε, λ) for λ ∈ iR>0 (note V (ε, λ) ∼= V (ε,−λ));
• The complementary series V (ε, λ) for 0 < λ < 1 (note V (ε, λ) ∼= V (ε,−λ));
• The discrete series V +

n and V −n for n ≥ 2;
• The limits of discrete series V +

1 and V −1 .

Complete list of irreducible unitary (g′,K ′)-modules:

• The 1-dimensional unitary representations g 7→ sgn det(g)ε|det(g)|λ with ε ∈ {0, 1} and λ ∈ iR;
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• The principal series V (0, 0, λ1, λ2), V (1, 1, λ1, λ2) (they differ by ⊗sgn(det)) with λ1, λ2 ∈ iR and
λ1/i < λ2/i; V (0, 1, λ1, λ2) for λ1, λ2 ∈ iR and λ1 6= λ2;

• The complementary series V (0, 0, λ1, λ2), V (1, 1, λ1, λ2) (they differ by ⊗sgn(det)) with 0 < λ1 −
λ2 < 1 and λ1 + λ2 ∈ iR; V (0, 1, λ1, λ2) with λ1 6= λ2,−1 < λ1 − λ2 < 1 and λ1 + λ2 ∈ iR;

• The discrete series V +
n ⊕ V −n for n ≥ 2;

• The limit of discrete series V +
1 ⊕ V

−
1 .

4.6. Classification in general: D-modules. Reference: [2]. Now G is a general connected real reductive
group. Fix a character ξ ∈ Spec Z(g). Let (g,K)-modξ be the abelian category of finitely generated
(g,K)-modules on which Z(g) acts by scalars via ξ. Suppose ξ corresponds to the W -orbit of λ+ρ ∈ h∗ by
Theorem 2.12 (under the usual W -action), and that λ+ ρ is dominant and regular, then the localization
functor gives an equivalence of categories

(g,K)-modξ ∼= Dλ-mod(X)KC

where the superscript KC stands for KC-equivariant twiste D-modules. In particular, irreducible (g,K)-
modules with infinitesimal character ξ are parametrized by irreducible Dλ-modules over the KC-orbit
closures on X. When λ + ρ is integral, regular and dominant (which means 〈λ, α〉 ∈ Z≥0 for all positive
roots α), then we have a bijection

{irreducible (g,K)-modules with infinitesimal character ξ}
↔ {(O, ρ)|O ⊂ X is a KC-orbit, ρ is an irreducible representation of π0(KC,x) for some x ∈ O}.

When G = SL(W ), there are three KC-orbits on X = P1
C: two points which we call {0} and {∞} and

U = P1 − {0,∞}. The stabilizer of KC on U is {±1}. When ξ = 1
2`(` + 2) for some integer ` ≥ 0, the

corresponding λ+ρ can be whosen to be (`+ 1)ρ, which is integral, regular and dominant. In this case we
have four pairs (O, ρ) (when O = U we have two choices of ρ). The discrete series D±`+2 correspond to the
two point orbits. Let ε = ` mod 2, which also denotes the trivial or sign representation of {±1} (stabilizer

of KC on U). The pair (U, ε) then corresponds to the finite-dimensional representation Sym`(WC); the rest
corresponds to the irreducible principal series V (1− ε, `+ 1).
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